
RPC 0.1.3 1 June 16th 1991

RPC Stub Compiler
Version 0.1.3

0. About this release

1. Introduction

2. Q&A

3. Syntax

4. Parameters

5. Options

6. Examples

RPC 0.1.3 2 June 16th 1991

© Paul Campbell 1991, All Rights Reserved

RPC 0.1.3 3 June 16th 1991

0. About this release
This release of the RPC stub compiler is the first one, as such I'm sure there are lots of bugs, I've
hammered on it as much as possible, but for what tries to be a very orthoganal piece of code it's
hard to poke in all the corners, I'm planning a new major release probably in mid June 1991 - if
people report bugs back to me - I'll try and bring out small maintainance releases in the
meantime, I can be reached at taniwha!paul@mtxinu.com (on the internet, this I read every day)
and at CAMPBELL.P on AppleLink (this I read about once a week, sometimes more, sometimes
less).

The RPC stub compiler is protected by my copyright, but I'm releasing it for general use, you
may use it for your own use and use the resulting output in any way you like. You MAY NOT
sell it or redistribute it for a fee without my express permission.

The RPC stub compiler is shareware, this doesn't mean it's free, just that you don't have to pay
for it unless you intend to use it. If you do so please donate $10 (for individuals) or $50 (if you
are using it on behalf of a company) to Amnesty International or the ACLU

thanks

Paul Campbell
May 24th 1991

RPC 0.1.3 4 June 16th 1991

1. Introduction
This document describes the RPC Stub Compiler called 'rpc' which is an MPW tool to create
Apple Events glue for program to program communication.

An RPC Stub Compiler is a compiler that reads a description of a procedural interface (like a
subroutine call) and produces the necessary code so that the call may be made to a subroutine in
a remote process. In this case the transport used is AppleEvents and the compiler makes all the
AppleEvents calls required to round up all the arguments, send them to the remote process,
unpack them and call the server subroutine, and return the resulting value (if any) back to the
calling routine.

This compiler is based around C and it accepts a C-like syntax for its subroutines, it produces as
output MPW C source which can be compiled to produce the resulting AppleEvents glue. Since
it uses AppleEvents as a transport you must be running System 7.0 or later of the Mac OS.

To Install it simply drag the MPW Tool rpc into your MPW 'Tools' directory.

The MPW tool takes the form:

rpc [-v] [-o output-file] input-file

where:
-v is an optional flag which turns off verbose mode (the copyright and version

message)

-o output-file allows you to optionally specify the output file name, by default this
will be the input-file with '.h' appended to it.

input-file this is the name of the input file and usually ends with the suffix '.rpc'

Chapter 3 of this manual describes the syntax of the input-file in greater depth.

The output-file is a C include file, it may be included into many different C source files, it
contains 4 parts:

• Subroutine prototypes for the client and server action subroutines (client routines have
the same names as in the input-file , server action routines have the suffix '_SERVER'
appended to them).

• The source to the client access routines - these are only included if the #define
RPC_CLIENT is defined and this should only be done in one of the files that the output-
file is included in. You should make sure that all data structures that end up being
referenced by this file are defined BEFORE it is included - this mostly applies to

RPC 0.1.3 5 June 16th 1991

parameters to routines you define. If you are just compiling a server these don't have to
be included at all.

• The source to the server access routines - these are only included if the #define
RPC_SERVER is defined and this should only be done in one of the files that the
output-file is included in. You should make sure that all data structures that end up
being referenced by this file are defined BEFORE it is included - this mostly

RPC 0.1.3 6 June 16th 1991

applies to parameters to routines you define. If you are just compiling a client these don't
have to be included at all. The server access routines all have the suffix '_HANDLER'
and call the server action routines that you must provide which have the suffix
'_SERVER'.

• Source to a routine, called 'rpc_server_init', that will register the server access routines
with AppleEvents - you should include this once in your sources (by defining
RPC_SERVER_INIT) and call it during your application's initialization.

The AppleEvents glue code use some basic assumptions about timeouts etc these may change in
future releases of the rpc compiler, or of course you can edit the resulting sources to change them
yourself.

If you want to provide an idle event loop to AESend when when you define RPC_CLIENT you
can #define the symbol CLIENT_IDLE_FUNCTION to be the name of your idle function (this is
important if you intend to be able to make rpc calls to yourself).

Since this rpc package is based on AppleEvents, in your server you must dispatch incoming
AppleEvents (events of type kHighLevelEvents) by calling AEProcessAppleEvent (which will
in turn call your server routines). Check out Inside Mac IV pp6-26/6-27 for more detail.

RPC 0.1.3 7 June 16th 1991

2. Q/A

Q: Why isn't it in Pascal rather than C?

A: Because I program in C and I wrote it :-) ... actually all the routines are Pascal callable you
just have to compile them using C.

Q: What if I use Think C rather than MPW?

A: Same sort of answer I use MPW C from day to day and don't have Think C so I can't
compile it.

Q: How do I turn off the annoying copyright message?

A: Use the '-v' flag, if it's annoying you you've probably got the message.

RPC 0.1.3 8 June 16th 1991

3. Syntax

Input data is similar to C, both sorts of comment (/* ... */ and // to the end of the line) are
supported.

If a '#' is discovered in the input text it and the following characters to the end of the current line
are copied to the output, you should only do this BETWEEN declarations, if you don't the results
are undefined.

Text is case sensitive, just like C. Anywhere where you can input a '????' style value you can also
use the corresponding symbolic name, rpc knows about all the names in the MPW include files
and in the Apple Events Registry from the Golden Master 7.0 CD - where they differ values are
resolved in favor of the MPW files.

The following are reserved words and can't be used for name s

char cstring double
enum extended float
handle list long
of option pstring
short struct union
unsigned

Error reporting is rather tacky - the basic error is 'parse error' with the line number and file it
occured on.

The text consists of a list of declarations of the form:

[type] name (class , id) ([param ,...]) ;

Where:

type is an optional return type, currently you are limited to one return value and
it's types are restricted to 'simple' types (see below).

name is the name used to name all the generated routines (make sure it doesn't
clash with anything else you have declared).

class is the event class that the server responds to

id is the event ID that the server responds to

param,... is an optional list of parameters separated by commas.

RPC 0.1.3 9 June 16th 1991

RPC 0.1.3 10 June 16th 1991

Parameters have one of 7 formats:

c-type name [key]
c-type name [] [key]
s-type name [key]
s-type name [] [key]
list of c-type name [key]
list of s-type name [key]
list of (param ,...) [key]

Where:

c-type this is a C style type, valid types are:

char
unsigned char
short
unsigned short
long
unsigned long
float
double
extended
struct name *
union name *
enum name
cstring
pstring
handle

the last two are null terminated and counted strings resp.

s-type This one of the following types:

 typeBoolean
 typeChar
 typeSessionID
 typeLongInteger
 typeShortInteger
 typeLongFloat
 typeShortFloat
 typeExtended
 typeComp
 typeKeyword
 typeType

RPC 0.1.3 11 June 16th 1991

 typeEnumerated
 typeMagnitude
 typeApplSignature
 typeAlias
 typeAppParameters
 typeAEList
 typeAERecord
 typeFSS
 typeTargetID

RPC 0.1.3 12 June 16th 1991

 typeProcessSerialNumber

(other types may be added in future releases of the compiler - what
do you want?)

key Is a key (either a keyword or a string of 4 characters surrounded by single
quotes) and corresponds to the key used for the parameter within an
AppleEvent, it is optional and if you don't define it the compiler will
generate one for you.

param ,... This corresponds to a list of parameters separated by commas, parameter
lists in 'list of ()' like this may not have key options.

Options

Input can also contain lines of the form:

option option,... ;

Where:
option,... is a list of option of one of the following forms:

name This sets a boolean option
- name This clears a boolean option
name = string This sets a string options to the

value (inside of double quotes) given by the
string option.

RPC 0.1.3 13 June 16th 1991

4. Parameters
Parameters passed to rpc stub routines depend on how you declare them, the various different
options allow you some control on how the parameters are packed up and sent to the remote
server, wherever possible the standard type codes for parameters are used, where this is not
possible RPC will make some for you (where this happens is noted below).

c-type name

For this type you can use any of the C-style types described above.

If you use the 'struct name *' or 'union name *' options you must pass the addresses of the
structures or unions you wish to pass, since these may be of any type the compiler doesn't use a
standard type code but instead uses one of it's own - this makes it hard to send arbitrary
structures to known servers.

If you use the 'cstring' or 'pstring' types you must pass the address of a null terminated or counted
string resp. These parameters are passed as type 'TEXT' parameters.

If you pass something of type 'handle' it must be a genuine Mac memory manager handle - since
the glue uses GetHandleSize to find out how big it is.

c-type name []

This type is similar to the previous type except that the address of an array of the appropriate
type is passed to the rpc routine as well as an integer describing the number of entries in the
array (the next parameter after the address of the array).

This is a relatively efficient way to send data since it all gets packed up into one parameter,
however it's not suitable for using to pass data to well known servers since they expect descriptor
lists (see below)

You can't use types 'cstring' and 'pstring' with [] options, this is because such strings have
variable sizes and you can't make arrays of them.

s-type name

For this type you can use any of the standard types described above.

If you use the type typeChar it is treated exactly like a 'pstring' described above.

If you use a typeAlias you must pass an alias handle as a parameter.

s-type name []

RPC 0.1.3 14 June 16th 1991

This passes arrays of standard types to remote servers and works in the same manner as for C-
types above.

You can't use types typeChar and typeAlias with [] options, this is because such objects have
variable sizes and you can't make arrays of them.

RPC 0.1.3 15 June 16th 1991

list of c-type name

This construct creates an AppleEvents Descriptor list of the standard c-types being passed,
unlike the [] construct above you can make arrays of 'cstring's and 'pstring's (by passing the
address of an array of pointers to them). Like the [] construct you have to pass a count of the
number of entries in the next parameter to the routine.

list of s-type name

This construct creates an AppleEvents Descriptor list of the standard c-types being passed,
unlike the [] construct above you can make arrays of 'typeChar's and 'typeAlias's (by passing the
address of an array of pointers to them). Like the [] construct you have to pass a count of the
number of entries in the next parameter to the routine.

list of (param ,...)

This allows you to group the parameters within the parentheses into an AppleEvents descriptor
list all with the same key.

When a server routine is called all the parameters are passed into it in the same manner as they
were passed into the client, in the case of dynamic parameters (for example arrays, strings or
aliases) the server stub will deallocate the space used when the call completes - don't attempt to
do this for it.

The type of the result returned (if any) from an RPC routine is currently restricted to simple s-
types and c-types (with the exception of the variable length ones such as cstrings, pstrings and
typeAliases - this restriction will probably be removed in future compiler releases - along with
the limitation of being able to return just one value).

Finally whenever you call an rpc stub you must pass as the first parameter the address of an
AEAddressDesc descriptor describing the remote process you wish to send the message to (you
can use the PPCBrowser or other PPC utilities to generate this record).

RPC 0.1.3 16 June 16th 1991

5. Options

There are two types of options - boolean options have the values on and off and are set and
cleared by simply using their name within an optionsstatement (or the name preceded by a minus
sign to clear them). String options have string values and are set by an entry in an option
statement of the form 'name = "string" ', they are usually used to replace some text in the output
file.

The following boolean options are defined:

Name Function Default Value

client Enables output of client stub code on

server Enables output of server stub code off

The following string options are defined:

Name Function Default Value

send_timeout sets the timeout value for client calls "kAEDefaultTimeout"
to AESend

send_options sets the options value for client calls "kAEWaitReply |
to AESend kAEAlwaysInteract |

 kAECanSwitchLayer"

send_prio sets the prority value for client calls "kAENormalPriority"
to AESend

send_idle sets the idel function for client calls "CLIENT_IDLE_FUNCTION"
to AESend

send_filter sets the filter function for client calls "NULL"
to AESend

RPC 0.1.3 17 June 16th 1991

6. Examples

//
//
// This file is an example of the rpc stub compiler
//
//
// Notice that whenever a # sign is discovered everything from it to the end of it's line
// is included in the output file
//

#include <aliases.h>

/*
*
* The following is an example showing all the different types of parameter
* passing and what sort of real parameters things get converted to in
* the stubs
*/

short fred ('abcd' : 'defg') ('long' a[],
// becomes - long *a, unsigned long a_count
 struct b *b,

// struct b *b
 list of float c,

// float *c, unsigned long c_count
 list of (long d, short e) 'QQQQ');

// long d, short e
//
//
// Which ends up looking like:
//
// For the client pascal OSErr fred(AEAddressDesc *server,
// short *result,
// long *a, unsigned long a_count,
// struct b *b,
// float *c, unsigned long c_count,
// long d, short e);
//
//
// For the server pascal OSErr fred_SERVER(short *result,
// long *a, unsigned long a_count,
// struct b *b,

RPC 0.1.3 18 June 16th 1991

// float *c, unsigned long c_count,
// long d, short e);
//

RPC 0.1.3 19 June 16th 1991

//
//
// here are some stub declarations for the core events for things that only
// handle aliases
//
//

core_open_doc(kCoreEventClass:kAEOpenDocuments)
(list of typeAlias THINGS keyDirectObject);

core_print_doc(kCoreEventClass:kAEPrintDocuments)
(list of typeAlias THINGS keyDirectObject);

core_open_app(kCoreEventClass:kAEOpenApplication)
(list of typeAlias THINGS keyDirectObject);

core_quit_app(kCoreEventClass:kAEQuitApplication)
 ();

//
// for example core_open_doc ends up as
// pascal OSErr core_open_doc(AEAddressDesc *server,
// AliasHandle **THINGS, unsigned long THINGS_count);
//
//

//
// Here are some stub declarations for the same things with fsspecs ... (commented
// out here because you don't want to declare 2 handlers for the same event)
//

//core_open_doc_fs(kCoreEventClass:kAEOpenDocuments)
// (list of typeFSS THINGS keyDirectObject);

//core_print_doc_fs(kCoreEventClass:kAEPrintDocuments)
// (list of typeFSS THINGS keyDirectObject);

//core_open_app_fs(kCoreEventClass:kAEOpenApplication)
// (list of typeFSS THINGS keyDirectObject);

//
// for example core_open_doc_fs ends up as
// pascal OSErr core_open_doc_fs(AEAddressDesc *server,

RPC 0.1.3 20 June 16th 1991

// FSSpec *THINGS, unsigned long THINGS_count);
//

RPC 0.1.3 21 June 16th 1991

//
// finally here are some examples of the options keywords, firstly using the
// server/client options to create a server that gets FSSpecs and a client that sends
// aliases, also set the send_timeout to be 400 ticks
//

option server -client send_timeout = "400";

test_open_app_alias('test':kAEOpenApplication)
(list of typeAlias THINGS keyDirectObject);

option -server client;
test_open_app_fs('test':kAEOpenApplication)

(list of typeFSS THINGS keyDirectObject);

option server client;

